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Abstract

A novel approach is described to analyze NMR relaxation data on proteins. This method introduces the frequency-dependent

order parameter, S2ðxÞ, in order to estimate contributions to the generalized order parameter S2 from different motional frequencies

occurring on the picosecond to nanosecond time scales. S2ðxÞ is defined as the sum of a specified set of weighting coefficients from

the Lorentzian expansion of the spectral density function. 15N NMR relaxation data (500, 600, and 800 MHz) on protein GB1

exemplify the method. Using this approach provides information on motional restrictions over specific frequency or time scale

ranges and provides a normalized comparison of motional restrictions between proteins having different overall tumbling corre-

lation times.

� 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction and theory

The order parameter is a measure of the internal

motional restriction of some vector, usually a N–H or

C–H bond in a protein. It is perhaps the most important

parameter currently used to describe intramolecular

mobility. The generalized squared order parameter, S2,

was defined by Lipari and Szabo [1,2] as

S2 ¼ 4p
5

X2

m¼�2

hY2mðh;uÞihY �
2mðh;uÞi; ð1Þ

where Y2m are spherical harmonics of the second order h
and u and are polar angles for the motional vector

within the molecular frame. Averaging is performed

over all orientations of the motional vector. Considering

only fast motions, like rotational fluctuations within a

potential well (picosecond time scale), S2 usually falls in

the range of 0.9–1.0. For slower motions which occur

with larger amplitudes like rotational conformational
jumps (nanosecond time scale), S2 is normally reduced

to 0.5–0.8, depending on amplitudes and correlations of

these jumps [3,4].
Order parameters are usually derived from analysis of

NMR relaxation data using some form of the spectral

density function. The most popular approach was de-

veloped by Lipari and Szabo in 1982 [1,2], essentially

assuming that the spectral density function can be de-

scribed by two Lorentzians

JðxÞ ¼ S2so

1 þ ðxsoÞ2
þ ð1 � S2Þsi

1 þ ðxsiÞ2
; ð2Þ

where si ¼ sosR
i =ðso þ sR

i Þ is the internal motional cor-

relation time modified by the overall tumbling correla-

tion time, so, and sR
i is the actual internal motional

correlation time. Although most often referred to as the
�model free� approach, this method is not truly �model-

free� because during derivation of Eq. (2) it was assumed

that internal bond rotations within the molecule can be

described by a single correlation time, si. In fact, there

are only two situations for which Eq. (2) is valid: iso-

tropic overall tumbling with internal rotational jumps

between n equivalent states or between two non-equiv-

alent states. Even a simple model for rotational jumps
between three non-equivalent states (e.g., trans-gauch
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transitions) requires the use of two internal motional
correlation times. Clore et al. [5] found that in many

cases, even with a limited amount of experimental data,

at least three Lorentzians are required to describe the

spectral density function, which in this case is expressed

as

JðxÞ ¼ S2
f S

2
s so

1 þ ðxsoÞ2
þ S2

f ð1 � S2
s Þss

1 þ ðxssÞ2
þ ð1 � S2

f Þsf

1 þ ðxsfÞ2
: ð3Þ

Sf , Ss, sf , and ss are order parameters and correlation

times for fast and slow internal motions, respectively.

Andrec et al. [6] later combined the use of Bayesian

statistical methods and the Lipari–Szabo approach to

estimate parameters from a multi-Lorentzian approxi-
mation of the spectral density function. Using a varia-

tion of the standard model free approach, LeMaster [7]

analyzed NMR relaxation data using up to four internal

motional correlation times, si, with an expression for

JðxÞ like

JðxÞ ¼ S2so

1 þ ðxsoÞ2
þ
XN
i¼1

cisi

1 þ ðxsiÞ2
; ð4Þ

where si values are defined over a specific frequency

range determined by Monte-Carlo minimization. Al-

though it is impossible to determine individual correla-
tion times and their weighting coefficients ci from the

limited number of experimental data for N > 1, Le-

Master did demonstrate that the sum of ci values can be

determined accurately.

In proteins, there are numerous internal motional

correlation times that could be derived to describe var-

ious rotational fluctuations and jumps within the back-

bone and side chains. Moreover, most protein molecules
are non-spherical and overall tumbling of anisotropic

molecules generally complicates analysis of NMR re-

laxation data. Therefore, it should not be surprising that

Eqs. (2), (3), and even (4) are generally inadequate to

analyze high quality NMR relaxation data collected at

different frequencies, even though can allow many mo-

tional parameters to be determined. Nevertheless, due to

the complexity of protein dynamics, some model as-
sumptions must be made to simplify the analysis. One of

the problems with using any of these �model free� ap-

proaches is not knowing the number of Lorentzians

required to fit JðxÞ. Having a good and relatively large

set of NMR relaxation data allows one to use multiple

Lorentzians to more accurately describe JðxÞ [8]. In this

regard, one should use the largest number of Lorentz-

ians allowed by the number of experimental parameters.
Another problem, rarely discussed but highly important,

is the presence of relatively slow internal motions with

correlation times sR
i larger than about so=2. In this case,

corresponding si values in Eqs. (2)–(4) will be nearly the

same as the correlation time for overall tumbling, so,

and it would be nearly impossible to separate sR
i and so,

which leads to overestimated values of S2. This, in turn,
also makes it difficult to compare order parameters from

various sized proteins that have different overall tum-

bling correlation times. For one protein, internal mo-

tional correlation times may be near so, and therefore

inseparable from so, whereas for another protein, they

may be separable yielding a �less contaminated� S2 value.

To avoid such difficulties, it would be useful to have

an order parameter that describes internal motional re-
strictions with correlation times defined over some spe-

cific frequency region. These frequency-dependent order

parameters could be more easily compared among

proteins of different size and shape, thereby providing

deeper and more useful insight into protein dynamics in

general. Here, we introduce the frequency-dependent

order parameter, S2ðxÞ, to help visualize motional re-

strictions within various, yet specific, frequency ranges.
This then allows for a better comparison of order pa-

rameters from different proteins. Here, we also provide

the algorithm used to calculate S2ðxÞ. Use of this al-

gorithm minimizes the normally deleterious effect from

not knowing the actual number of modes involved in the

motions of a particular vector, i.e., the precise number

of Lorentzians needed to describe the spectral density

function for that vector.
First of all, because it is reasonable to describe JðxÞ

as a sum of Lorentzians for any Markovian type of

motion, the spectral density function generally can be

written as

JðxÞ ¼
Xm
k¼0

cksk
1 þ x2s2

k

þ
XN

k¼mþ1

cksk
1 þ x2s2

k

: ð5Þ

ck and sk, k ¼ 0; 1; . . . ;m, are the weighting coefficients

and correlation times describing overall molecular

tumbling. Parameters ck and sk for k > m describe in-

ternal motions. For a spherical molecule, m ¼ 0;

whereas for symmetric top rotational diffusion, the
number m ¼ 2, and so on. The sums

P
ci are equal toXm

k¼0

ck ¼ S2;

XN
k¼mþ1

ck ¼ 1 � S2:

ð6Þ

N is the number of internal motional correlation times

or motional modes.

The frequency-dependent order parameter, S2ðxÞ, is

defined as the squared order parameter governing mo-

tions for any correlation time s less than 1=x. If the

terms in Eq. (5) are sorted as si > siþ1, one can write

S2ðxkÞ ¼ 1 �
XN
i¼k

ci; ð7Þ

where k > m is the motional mode number so that

1=si > x for any i ¼ k, k þ 1; . . . ;m. The parameter
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S2ðxÞ has a simple physical meaning: it is the squared
order parameter for all motions with motional fre-

quencies greater than x. At first glance, the method of

LeMaster [7] appears similar to the S2ðxÞ approach;

however, the LeMaster method is quite different because

it sums ci values over the full frequency range of de-

tectable internal motions and cannot be used to derive

the frequency dependence of the order parameter as we

are doing here.
According to Eqs. (5)–(7), S2ðxÞ is related to the

generalized order parameter, S2, by

S2ðx ¼ 1=smÞ ¼ S2: ð8Þ
According to this definition, the limit S2ð1Þ ¼ 1. In

practice it is hard to determine the value of m. This
problem is related to the general problem of separating

overall tumbling and relatively slow internal motional

correlation times, which will be considered in a separate

paper. As shown below, it is convenient to calculate the

function S2ðxkÞ for all k values as function of x. In the

case of an isotropic liquid, S2ðxoÞ ¼ 0. In the S2ðxÞ plot,

one observes a rather large inflection or drop in the

function at low frequency. This drop corresponds to
contributions from overall tumbling and relatively slow

internal motions. Comparison of S2ðxÞ plots for differ-

ent proteins must be done for x values that are far away

from this drop. Fig. 1 exemplifies an S2ðxÞ function,

which has been calculated using three correlation times,

so, ss, and sf . Note that the X-axis is given in units of

1=x for easier readout of correlation time regimes. Steps
(solid lines) are observed when 1=x is equal to its re-

spective correlation time. The S2 limit in S2ðxÞ is ob-

served for the correlation time range ss–so. In practice,

factors like experimental error, insufficient data, and

distributions of internal motional correlation times, tend

to broaden these unrealistically sharp transitions as il-

lustrated by the dotted line. If one uses a small number

of Lorentzians to describe S2ðxÞ, i.e., the Lipari–Szabo
approximation with two Lorentzians, the finer details

disappear as schematically illustrated by the dashed line

in Fig. 1.

To use this method, one needs to determine the co-

efficients ci and correlation times si, for i ¼ 0; 1; . . . ;N ,

with N being as large as possible for any given set of

experimental data. With three relaxation parameters,

e.g., T1, T2, and NOE, acquired at three magnetic field
strengths, there are nine experimental parameters that

can be used to determine up to nine theoretical param-

eters, i.e., five Lorentzians in Eq. (3) if one takes into

account that
P

ci ¼ 1. Although it is practically im-

possible to obtain reliable values of ci and si for N > 2,

linear combinations and other functions of ci and si over

some frequency range are very stable and can be deter-

mined accurately as shown by LeMaster [7]; see also [8]
and [9].

To estimate errors in determining S2ðxÞ using relax-

ation data acquired at three magnetic fields, a simple

Monte-Carlo procedure [6] was used as outlined in the

following algorithm:

1. Randomly take five values of correlation times si:

0 < si < t1. To cover a range of possible errors in the

estimation, as well as the influence of rotational anisot-
ropy, t1 should be about 50–70% larger than the

estimated overall correlation time so for a given pro-

tein molecule. To estimate so, one can use the empiri-

cal equation so ¼ ð9:18 
 10�3=T Þ expð2416=T Þn0:93
R ,

where nR is the number of residues, T is the tempera-

ture in K [4].

2. Use any minimization program to find appropriate

values of ci that best fit the experimental data, i.e.
minimize the sum of nine terms v2 ¼ ð1=9Þ

P
ðRj � Rcalc

j Þ2=r2
i , where Rj are experimental parame-

ters; Rcalc
j are calculated parameters, and rj are the ex-

perimental errors in determining Rj. If v2 < 1 store

the set of ci and si. Repeat steps 1 and 2 if v2 > 1.

3. Repeat this process n times (usually n ¼ 100–200) to

obtain n sets of ci and si. For each kth set of ci, cal-

culate S2ðxÞk from Eq. (7). The probability, Pk, of
finding the kth set of ci and si as [6]

Pk ¼
Y9

j¼1

1ffiffiffiffiffiffiffiffiffiffi
2pr2

j

q exp

"
�
ðRj � Rcalc

jk Þ2

2r2
i

#
; ð9Þ

where Rcalc
jk are calculated parameters for the kth

set.

Fig. 1. Simulation of a S2ðxÞ function for the motional model de-

scribed by three correlation times: so ¼ 8 ns, ss ¼ 800 ps, and

sf ¼ 100 ps. The solid line represents an ideal function of S2ðxÞ.
Broader transitions (dotted lines) are normally observed due to ex-

perimental errors, insufficient data, and/or distributions of internal

motional correlation times. The Lipari–Szabo approximation (two

Lorentzians) is schematically shown by the dashed line and labeled

with �LS�. The generalized order parameter, S2, can be read from the

lower plateau, whereas the upper plateau indicates the order parameter

for fast motions, S2
f defined by Clore et al. [5]. Correlation times for

overall tumbling, so, slower nanosecond time scale internal motions,

ss, and faster picosecond time scale internal motions, sf , are read from

the transition points as indicated.
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4. Use 5n weighted Lorentzians to describe JðxÞ. The
average value of S2ðxÞ and the standard deviation

DðxÞ of S2ðxÞ can be calculated as

S2ðxÞ ¼
X

pkS2ðxÞk;

D2ðxÞ ¼
X

pk½S2ðxÞ � S2ðxÞk�
2
;

ð10Þ

where pk ¼ Pk=
P

Pk.
This procedure allows one to obtain smooth the

transitions as illustrated by dotted lines in Fig. 1. The

appearance of non-sharp transitions between motional

modes essentially results from experimental errors in the
relaxation parameters and distributions of correlation

times. For this reason, the symbol S2ðxÞ, rather than

S2ðxkÞ, will be used throughout the remainder of the

text.

Fig. 2 illustrates model calculations of S2ðxÞ using

NMR relaxation parameters calculated by assuming

that molecular motions are described by three Lo-

rentzians with so ¼ 6000 ps, s1 ¼ 1000 ps, s2 ¼ 10 ps,
c0 ¼ 0:5, c1 ¼ 0:4, and c2 ¼ 0:1. In order to appreciate

differences in using different numbers of Lorentzians to

fit relaxation data, both two- and five-Lorentzian ap-

proximations of JðxÞ were used to calculate S2ðxÞ as

shown in the figure. Although using relaxation data
acquired at three frequencies (500, 600, and 800 MHz)

yields the best results, it is readily apparent that use of

the five-Lorentzian approximation with data acquired at

only two frequencies (500 and 600 MHz) provides a very

acceptable alternative. This is observed in spite of hav-

ing an insufficient number of experimental parameters

normally required to obtain the desired nine theoretical

parameters (c and s). The linear combination of c co-
efficients, which defines S2ðxÞ, therefore, produces a

fairly stable function. In this case, pairing 500 and

600 MHz data yields better results than pairing

500 MHz (or 600 MHz) and 800 MHz data. This was

surprising and should underscore the idea that acquiring

relaxation at the highest magnetic field strength avail-

able may not always be necessary or desirable. However,

in general, this depends on the values of the correlation
times for overall tumbling and internal motions. Using

the two-Lorentzian approximation (panels at the right)

yields substantial error even when three spectrometer

frequencies are used to calculate S2ðxÞ.

2. Methods and materials

The 56-residue protein GB1 was produced as a re-

combinant protein as described by Barchi et al. [10].

Escherichia coli containing the expression system for

GB1 were grown on M9 minimal media containing 15N-

ammonium, and GB1 was uniformly isotopically en-

riched in 15N. The protein was purified by HPLC using a

linear acetonitrile/water gradient, and purity was

checked by MALDI-TOF mass spectrometry and ana-
lytical HPLC on a C18 Bondclone (Phenomenex) col-

umn. For NMR measurements, freeze-dried samples

were dissolved in a H2O=D2O (95/5) mixture in 20 mM

potassium phosphate. Protein concentration, deter-

mined from the dry weight of freeze-dried samples, was

10 mg/mL. The pH was adjusted to pH 5.25 by adding

microliter quantities of NaOD or DCl.

With uniformly 15N-enriched GB1, spin–lattice (T1),
spin–spin (T2) relaxation times and 15N-{1H} NOEs

were measured at three Larmor precession frequencies

(1H frequencies of 500, 600, and 800 MHz) on Varian

Inova 500, 600, and 800 NMR spectrometers equipped

with triple-resonance probes. The temperature was set at

15 �C. Temperature calibration was performed by using

the chemical shifts of resonances from methanol.
15N spin–lattice and spin–spin relaxation rates were

measured by using the HSQCSE sequence [11], which

employs pulsed field gradients for the coherence transfer

pathway whereby magnetization passes from 1H to 15N

and back again to 1H for observation. The water flip-

back method was used to minimize water saturation

during the pulse sequence. The delay in the CPMG

train was set to 0.625 ms. To attenuate cross-correlation

Fig. 2. Model calculations of S2ðxÞ from relaxation data simulated for

different NMR frequencies (500, 600, and 800 MHz 1H spectrometer

frequencies) as indicated in the figure. The simulation was performed

by assuming that molecular motions were described by three Lo-

rentzians with parameters: so ¼ 6000, s1 ¼ 1000 ps, s2 ¼ 10 ps,

c0 ¼ 0:5, c1 ¼ 0:4, and c2 ¼ 0:1. Left and right panels represent sim-

ulations performed using five and two Lorentzian approximations,

respectively. Error bars were computed as discussed in Section 1.
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between dipolar and chemical-shift anisotropy terms
during the relaxation period, 180� pulses of alternating

phase with an interval of 5 ms were applied [12,13].

Spectra were recorded by using relaxation delays of 40,

60, 90, 160, 250, 360, and 490 ms for T1 and 20, 40, 60,

90, 120, 180, and 240 ms for T2. During the relaxation

delay, tR, water magnetization affected by these 1H 180�
pulses decreases proportionally to expð�tR=T1 waterÞ.
Consequently, in the presence H(N)–water proton ex-
change, conditions will be different at the beginning of

the first INEPT in the pulse sequence for experiments

acquired with different values of the relaxation delay

and T1 (or T2) will be underestimated. In order to

eliminate this effect, a compensation period (CP) with

the same pulse sequence as it is in the relaxation period

was included prior to the recycle period at the beginning

of the pulse sequence. The compensation period varies
in length with the relaxation time, tR, and is defined by

CP ¼ tmax � tR, where tmax is the maximal relaxation

time for a given set of experiments. By using this

scheme, the same average values for the saturation of

water and protein resonances have been achieved. It also

allows to avoid different sample heating during the set of

relaxation experiments with various relaxation delays.

Recovery of magnetization of nuclei from the protein
depends only on the recycle period because 1H 180�
pulses prohibit recovery of magnetization during the

compensation period. For all T1 and T2 experiments, the

recycle period was 1.7 s, and all relaxation curves fol-

lowed single exponential decay.

Steady-state {1H}–15N NOEs were determined from

three spectra recorded with proton broad band irradia-

tion and in the absence of proton saturation with dif-
ferent water saturation conditions to compensate for

H(N)–water proton exchange [14]. Saturation was

achieved by application of 120� 1H pulses applied every

5 ms [15] during the 3 s recycle period.

Although the length of the N–H amide bond used in
15N relaxation studies is the subject of an ongoing de-

bate [16], it was set here to 1.02�AA [17] as is usually done

in such studies. All calculations were performed by using
the program FRELAN, which is available at www.nmr-

relaxation.com.

3. Results and discussion

To illustrate the frequency-dependent order parame-

ter approach, 15N NMR relaxation measurements were
performed with the 56 residue immunoglobulin-binding

domain of streptococcal protein G, GB1. Table 1 gives

sequence-averaged relaxation parameters (T1, T2, and
15N–{1H} NOE) measured at three magnetic field

strengths (1H frequencies of 500, 600, and 800 MHz) as

described in [9], and complete relaxation data are given

as supplemental information. S2ðxÞ functions were de-

termined for 15NH backbone bonds from these 15N

NMR relaxation data. Fig. 3 shows calculated S2ðxÞ
functions for NHs of five residues in GB1: I6, T11, L12,

T16, and V29. Similar appearing functions are observed

for all NHs in the protein. Fitting errors are exemplified

in the insert for only residue L12 for clarity. As expected

from model results shown in Fig. 2, maximal error is

found in the transition regions.

Three plateaus are observed in these S2ðxÞ curves

(Fig. 3). The first plateau occurs at high frequency where
1=x < 600 ps. NMR relaxation parameters are least

sensitive to motional correlation times less than about

200 ps. Therefore, all contributions to S2ðxÞ from 0 to

200 ps can be considered more or less as a constant de-

scribed by S2
f (see Fig. 1). Motional contributions over

the range from 200 to 600 ps are minimal, and the 1=x
transition up to S2ðxÞ ¼ 1:0 cannot be determined due

to a lack of experimental data in this high frequency
regime. At lower frequencies where 1=x > 600 ps, S2ðxÞ

Table 1

Sequence-averaged 15N NMR relaxation parameters for GB1 at 5 �C
at three spectrometer frequencies

Experiment Average value

T1 (500 MHz) 422  44 ms

T1 (600 MHz) 474  45 ms

T1 (800 MHz) 561  44 ms

T2 (500 MHz) 180  19 ms

T2 (600 MHz) 172  18 ms

T2 (800 MHz) 150  15 ms

NOE (500 MHz) �0:31  0:08

NOE (600 MHz) �0:27  0:06

NOE (800 MHz) �0:20  0:05

Fig. 3. S2ðxÞ functions are shown for NH backbone bonds of five

residues in protein GB1 (I6, T11, L12, T16, and V29). S2ðxÞ was

calculated using 15N NMR relaxation data acquired at three fre-

quencies (500, 600, and 800 MHz 1H spectrometer frequencies) at

15 �C. Errors for points on the S2ðxÞ curve for residue L12 are shown

in the insert and were determined as discussed in Section 1.
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drops substantially. This is the likely range for high
amplitude, internal motions, most probably related to

conformational jumps. The time scale for these internal

motions runs from 800 to 2000 ps. Most importantly,

internal motions on this nanosecond time scale are no-

ted for all NHs in protein GB1. This observation stands

in contrast to those made in previous protein dynamics

studies on GB1 [18,19], wherein only a few NHs (dif-

ferent in each of these studies) were reported to undergo
nanosecond time scale internal motions.

The final drop in S2ðxÞ to zero (Fig. 3) is related to

overall tumbling, so, which is equal to about 4.8 ns. so

values are somewhat different for individual residues due

to anisotropic rotational diffusion of the molecule and

to different orientations of the NH bond within the

molecular frame. To demonstrate that proper parame-

ters can be extracted using our approach, theoretical
values for so were calculated using averaged structural

coordinates for GB1 [PDB database, access code: GB1]

[20] and our program TENSOR II [4], which employs a

full anisotropic rotational diffusion model based on

analysis of intermolecular interactions. In Fig. 4, cal-

culated so values are plotted vs. so values derived using

our procedure. The linear dependence (correlation co-

efficient of 0.74) demonstrates the reliability of the S2ðxÞ
approach.

The height of the plateau between steps is essentially

the order parameter. NHs of residues T11 and L12,

which are part of the first turn connecting b-strands 1

and 2 in the protein, show the smallest order parame-

ters, consistent with the general observation that resi-

dues within turns and loops often exhibit less restricted

internal motions. On the other hand, NHs of residues I6,
T16, and V29, which belong to the b-sheet and a-helix

domains, display more restricted internal motions, i.e.,

larger order parameters. The width of the transition

around 1 ns is primarily determined by experimental

error, which depends on the value of S2. The largest

errors are observed for NHs of more mobile residues.

For all NHs in GB1, Fig. 5 plots S2ðxÞ values as

columns to represent points on S2ðxÞ curves taken at

two reciprocal frequencies, 1=x: 300 ps (top of columns)

and 2000 ps (bottom of columns). The top end of each

column is the squared order parameter for fast internal

motions, S2
f , and the bottom end of each column rep-

resents the squared order parameter for all internal
motions (the generalized order parameter, S2). The

lowest S2ðxÞ values are observed for NHs in turns/loop

and the N-terminus of the protein. NHs of residues at

the middle to C-terminal part of the helix are some of

the most motionally restricted. For comparison, order

parameters calculated using two Lorentzians (the Li-

pari–Szabo method) are also plotted in Fig. 5 as open

circles. These S2 values usually lie near the middle of
these S2ðxÞ columns, indicating that use of the Lipari–

Szabo method tends to yield overestimated generalized

order parameters. This should stand as a cautionary

note to investigators.

Lastly, because many researchers interested in protein

dynamics do not have the luxury of being able to acquire

NMR relaxation data at three spectrometer frequencies,

Fig. 6 illustrates S2ðxÞ curves calculated using full (three
frequencies) and reduced (one or two frequencies) 15N

NMR relaxation data sets. Although this comparison is

being shown for only one residue, E19, similar results

are observed using any of the other residues in the

protein. S2ðxÞ curves have also been calculated using

both five- and two-Lorentzian approximations. As

noted earlier (Fig. 2), using the full set of relaxation data

(500, 600, and 800 MHz) and the five-Lorentzian

Fig. 4. Theoretical values for overall tumbling times, so, are plotted vs.

so values determined using the new approach. Theoretical values for so

were calculated using averaged structural coordinates for GB1 (PDB

database, access code: GB1) [19] and our program TENSOR II [4],

which employs a full anisotropic rotational diffusion model.

Fig. 5. Values of S2ðxÞ for NH backbone bonds for all residues in

protein GB1 are shown as columns to represent points on S2ðxÞ curves

taken at two reciprocal frequencies, 1=x: 300 ps (top of columns) and

2000 ps (bottom of columns). The top end of each column is the

squared order parameter for fast internal motions, S2
f , and the bottom

end of each column represents the squared order parameter for all

internal motions (the generalized order parameter, S2). Order param-

eters calculated using two Lorentzians (the Lipari–Szabo method) are

plotted as open circles connected by solid lines.
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approximation yields the best results. Nevertheless, use

of only the 500 and 800 MHz data provides nearly the
same results in this instance. Unlike the case shown in

Fig. 2, the 500/600 MHz combination with these data

did not work as well as the 500/800 MHz combination in

the simulated data set. As was the case with these model

calculations (Fig. 2), it remains clear that using only two

Lorentzians to describe the spectral density function

leads to significant errors in fitting NMR relaxation

data.
In conclusion, the analytical approach described here

allows one to visualize the frequency dependence of

order parameters and more easily assess contributions to

the order parameter from different motional frequencies

over the picosecond to nanosecond range. This method

permits the use of the maximal number of Lorentzians

(correlation times) allowed by a given set of experi-

mental data and avoids errors that arise from incorrect
assumptions regarding the number of motional modes.

The values of S2ðxÞ for x less than 1=so can be com-

pared for proteins of various sizes and in different sol-

vents what allow to minimize errors of S2 calculations

which come from mixing contributions of slow internal

motions and overall tumbling.
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